Monday, March 13, 2017

Kemampuan Pemecahan Masalah


Terdapat banyak interpretasi tentang pemecahan masalah dalam matematika. Menurut Ruseffendi (2006:169), “Sesuatu itu merupakan masalah bagi seseorang bila sesuatu itu: baru, sesuai dengan kondisi yang memecahkan masalah (tahap perkembangan mentalnya) dan ia memiliki pengetahuan prayarat”.
Polya (dalam Firdaus, 2009) mengartikan “Pemecahan masalah sebagai suatu usaha mencari jalan keluar dari suatu kesulitan guna mencapai suatu tujuan yang tidak begitu segera dapat dicapai”. Sementara Sujono (dalam Firdaus, 2009) melukiskan “Masalah matematika sebagai tantangan bila pemecahannya memerlukan kreativitas, pengertian dan pemikiran yang asli atau imajinasi”. Selain itu Sihotang (2010:29) berpendapat “Problem solving adalah mencari atu menemukan cara penyelesaian (menemukan pola, aturan, atau algoritma)”.
Dari beberapa pendapat di atas, maka dapat disimpulkan kemampuan pemecahan masalah adalah kemampuan yang dimiliki individu dalam menyelesaikan masalah yang belum diketahui penyelesaiannya dengan cara mengidentifikasi masalahnya.
Walaupun kemampuan pemecahan masalah merupakan kemampuan yang tidak mudah dicapai, tapi karena kepentingan dan kegunaannya maka kemampuan pemecahan masalah ini hendaknya diajarkan kepada siswa pada semua tingkatan. Berkaitan dengan hal ini, Ruseffendi (2006:341) mengemukakan beberapa alasan soal-soal tipe pemecahan masalah diberikan kepada siswa :
(1)   Dapat menimbulkan keingintahuan dan adanya motivasi, menumbuhkan sifat kreatif;
(2)   Disamping memiliki pengetahuan dan keterampilan (berhitung dan lain-lain), disyaratkan adanya kemampuan untuk terampil membaca dan membuat pernyataan yang benar;
(3)   Dapat menimbulkan jawaban yang asli, baru, khas, dan beraneka ragam, serta dapat menambah pengetahuan baru;
(4)   Dapat meningkatkan aplikasi dari ilmu pengetahuan yang sudah diperolehnya;
(5)   Mengajak siswa memiliki prosedur pemecahan masalah, mampu membuat analisis dan sintesis, dan dituntut untuk membuat evaluasi tehadap hasil pemecahannya;
(6)   Merupakan kegiatan yang penting  bagi siswa yang melibatkan bukan saja satu bidang studi tetapi mungkin bidang atau pelajaran lain.

Pentingnya kemampuan penyelesaian masalah oleh siswa dalam matematika ditegaskan juga oleh Branca (dalam Firdaus, 2009) :
  1. Kemampuan menyelesaikan masalah merupakan tujuan umum   pengajaran matematika.
  2. Penyelesaian masalah yang meliputi metode, prosedur dan strategi merupakan proses inti dan utama dalam kurikulum matematika .
  3. Penyelesaian masalah merupakan kemampuan dasar dalam belajar matematika.
Menurut Ruseffendi (2006:169), dalam pemecahan masalah biasanya ada 5 langkah yang harus dilakukan:
1.    Menyajikan masalah dalam bentuk yang lebih jelas;
2.    Menyatakan masalah dalam bentuk yang oprasional (dapat dipecahkan);
3.    Menyusun hipotesis-hipotesis alternatif dan prosedur kerja yang diperkirakan baik untuk dipergunakan dalam memecahkan masalah itu;
4.    Mengetes hipotesis dan melakukanm kerja utuk memperoleh hasilnya (pengumpulan data, pengolahan data, dan lain-lain); hasilnya mungkin lebih dari sebuah;
5.    Memeriksa kembali (mengecek) apakah hasil yang diperoleh itu benar; mungkin memilih pula pemecahan yang paling baik.

Dari pernyataan di atas mengenai langkah-langkah dalam pemecahan masalah yang dikemukakan oleh sebagian ahli, maka peneliti kan menjadikan teori Polya sebaai acuan dalam penelitian tersebut. Dalam acuan penilaian pemberian skor dalam soal pemecahan masalah yang berbentuk uraian pada penelitian ini adalah hasil modifikasi dari Sumarno (dalam Topik, 2011:12) sebagai berikut.
Tabel 2.1
Pemberian Skor Pemecahan Masalah Matematis

Aspek yang diambil
Skor
Keterangan
Pemahaman Masalah
0
Salah menginterpretasikan soal atau tidak ada jawaban sama sekali

1
Salah menginterpretasikan sebagian soal atau mengabaikan kondisi soalkan

2
Memahami masalah atau soal selengkapnya
Perencanaan Penyelesaian

0
Menggunakan strategi yang tidak relevan atau tidak strategi sama sekali

1
Menggunakan satu strategi yang kurang dapat dilaksanakan dan tidak dapat dilanjutkan

2
Menggunakan sebagian strategi yang benar tapi mengarah pada jawaban yang salah atau tidak mencoba strategi yang lain

3
Menggunakan beberapa prosedur yang mengarah pada solusi yang benar
Pelaksanaan Perhitungan
0
Tidak ada solusi sama sekali

1
Menggunakan beberapa prosedur yang mengarah pada solusi yang benar

2
Hasil salah atau sebagian hasil salah tetapi salah perhitungan saja

3
Hasil dan proses benar
Pemeriksaan kembali hasil perhitungan
0
Tidak ada pemeriksaan atau tidak ada keterangan apapun

1
Ada pemeriksaan tetapi tidak tuntas

2
Pemeriksaan dilaksanakan untuk melihat hasil dan proses


No comments:

Post a Comment

Simbol Bilangan atau Angka

  a. Pengertian Angka Memahami suatu angka dapat membantu manusia untuk melakukan banyak perhitungan mulai dari yang sederhana maupaun y...

Blog Archive